939 research outputs found

    Investigating the potential for call combinations in a lifelong vocal learner

    Get PDF
    The ability for humans to create seemingly infinite meaning from a finite set of sounds has likely been a critical component in our success as a species, allowing the unbounded communication of information. Syntax, the combining of meaningful sounds into phrases, is one of the primary features of language that enables this extensive expressivity. The evolutionary history of syntax, however, remains largely debated, and it is only very recently that comparative data for syntax in animals have been revealed. Here, we provide further evidence for a structural basis of potential syntactic‐like call combinations in the vocal communication system of a group‐living songbird. Acoustic analyses indicate that Western Australian magpies (Gymnorhina tibicen dorsalis) structurally combine generic alarm calls with acoustically distinct alert calls to produce an alarm alert sequence. These results are distinct from previous examples of call combinations as, to our knowledge, evidence for this capacity is yet to be demonstrated in the natural communication of a non‐human species that is capable of vocal learning throughout life. These findings offer prospects for experimental investigation into the presence and function of magpie call combinations, extending our understanding of animal vocal complexity

    The Solar X-ray Limb

    Get PDF
    We describe a new technique to measure the height of the X-ray limb with observations from occulted X-ray flare sources as observed by the RHESSI (the Reuven Ramaty High-Energy Spectroscopic Imager) satellite. This method has model dependencies different from those present in traditional observations at optical wavelengths, which depend upon detailed modeling involving radiative transfer in a medium with complicated geometry and flows. It thus provides an independent and more rigorous measurement of the "true" solar radius, meaning that of the mass distribution. RHESSI's measurement makes use of the flare X-ray source's spatial Fourier components (the visibilities), which are sensitive to the presence of the sharp edge at the lower boundary of the occulted source. We have found a suitable flare event for analysis, SOL2011-10-20T03:25 (M1.7), and report a first result from this novel technique here. Using a 4-minute integration over the 3-25 keV photon energy range, we find RX−ray=960.11 ± 0.15±0.29R_{\mathrm{X-ray}} = 960.11\ \pm\ 0.15 \pm 0.29 arcsec, at 1 AU, where the uncertainties include statistical uncertainties from the method and a systematic error. The standard VAL-C model predicts a value of 959.94 arcsec, about 1σ\sigma below our value.Comment: 12 pages, 5 figures, accepted for publication in Ap

    A new method of observing weak extended x-ray sources with RHESSI

    Get PDF
    We present a new method, fan-beam modulation, for observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). This space-based solar x-ray and gamma-ray telescope has much greater sensitivity than previous experiments in the 3-25 keV range, but is normally not well suited to detecting extended sources since their signal is not modulated by RHESSI's rotating grids. When the spacecraft is offpointed from the target source, however, the fan-beam modulation time-modulates the transmission by shadowing resulting from exploiting the finite thickness of the grids. In this paper we detail how the technique is implemented and verify its consistency with sources with clear known signals that have occurred during RHESSI offpointing: microflares and the Crab Nebula. In both cases the results are consistent with previous and complementary measurements. Preliminary work indicates that this new technique allows RHESSI to observe the integrated hard x-ray spectrum of weak extended sources on the quiet Sun.Comment: Publishe

    Search and You Shall Find: Making Oral Histories Searchable with Transcripts and Metadata

    Get PDF
    Presentation on creating transcripts and metadata for oral history collections, including background information, tips, tools, and lessons learned

    A ROSAT HRI Observation of the Supernova Remnant G109.1 – 1.0

    Get PDF
    We present results of a search using ROSAT HRI data for X-ray spatial substructures in the galactic supernova remnant G109.1 – 1.0 which might indicate a connection between the remnant’s bright X-ray blob and its X-ray pulsar, 1E2259 + 586. A 0.1 – 2.4 keV HRI image, created by combining separate 28- and 22-ks pointings, reveals the presence of a few small-scale X-ray features, including a NE-SW emission ridge in the remnant’s X-ray blob. Two diffuse knots in the X-ray blob, previously suggested as being aligned with the X-ray pulsar, appear to be statistical fluctuations in the Einstein HRI data. We find no morphological evidence in the X-ray spatial substructures of G109.1 – 1.0 to support a pulsar jet origin for the X-ray blob as proposed by Gregory & Fahlman

    Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating

    Get PDF
    Modes in the frequency of distribution of fission track ages obtained from detrital zircon grains may prove characteristic of individual sandstone bodies, supporting the identification of the sources from which a particular flow of sedimentary detritus was derived and thus allowing new inferences to be made concerning palaeogeography. A computer program has been written and used to identify modes in the zircon fission track age distribution within two Lower Cretaceous sandstone samples from the Weald of southern England. Pronounced modes appear in one rock around 119 Ma, 160 Ma, 243 Ma and 309 Ma and in the other around 141 Ma, 175 Ma, 257 to 277 Ma and 394 to 453 Ma. The geological implications of these quite dissimilar zircon age spectra are discussed. It is concluded that they support the palaeogeographical models of Allen (1981) and indicate that the provenance of the first sample, from the Top Ashdown Sandstone member at Dallington in East Sussex, was almost entirely southerly, while that of the second, from the Netherside Sand member at Northchapel in West Sussex, was more varied, but predominantly westerly and northerl

    Antarctic Analog for Dilational Bands on Europa

    Get PDF
    Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven

    Using Jet Observations to Constrain Enceladus' Rotation State

    Get PDF
    Observations of Enceladus have revealed active jets of material erupting from cracks on its surface. It has been proposed that diurnal tidal stress may open these cracks daily when they experience tensile stresses across them, allowing eruptions to occur. An analysis of the tidal stress on jet source regions, as identified by the triangulation of jet observations, finds that there is a correlation between observations and tensile stress on the cracks. However, not all regions are predicted to be in tension when jets were observed to be active. Enceladus' rotation state, such as a physical libration or obliquity, will affect the diurnal stresses on these cracks, changing when in its orbit they experience tension and compression. We will use observations of jet activity from 2005-2007 to place constraints on rotation states of Enceladus

    Tidal Control of Jet Eruptions Observed by Cassini ISS

    Get PDF
    Observations by Cassini's Imaging Science Subsystem (ISS) of Enceladus' south polar region at high phase angles has revealed jets of material venting into space. Observations by Cassini's Composite Infrared Spectrometer (CIRS) have also shown that the south polar region is anomalously warm with hotspots associated with geological features called the Tiger Stripes. The Tiger Stripes are large rifts near the south pole of Enceladus, which are typically about 130 km in length, 2 km wide, with a trough 500 m deep, and are l1anked on each side by 100m tall ridges. Preliminary triangulation of jets as viewed at different times and with different viewing geometries in Cassini ISS images taken between 2005 and 2007 have constrained the locations of eight major eruptions of material and found all of them associated with the south polar fractures unofficially the 'Tiger Stripes', and found four of them coincident with the hotspots reported in 2006 by CIRS. While published ISS observations of jet activity suggest that individual eruption sites stay active on the timescale of years, any shorter temporal variability (on timescales of an orbital period, or 1.3 Earth days, for example) is more difficult to establish because of the spotty temporal coverage and the difficulty of visually isolating one jet from the forest of many seen in a typical image. Consequently, it is not known whether individual jets are continuously active, randomly active, or if they erupt on a predictable, periodic schedule. One mechanism that may control the timing of eruptions is diurnal tidal stress, which oscillates between compression/tension as well as right and left lateral shear at any given location throughout Enceladus' orbit and may allow the cracks to open and close regularly. We examine the stresses on the Tiger Stripe regions to see how well diurnal tidal stress caused by Enceladus' orbital eccentricity may possibly correlate with and thus control the observed eruptions. We then identify possible mechanisms by which tidal stress can provide access to the surface for volatile material and implications for observed jet activity
    • 

    corecore